$$
\begin{aligned}
\rightarrow H_{p}(A \cap B) & \xrightarrow{i_{*}^{A} \oplus\left(-i_{0}^{B}\right)} H_{p}(A) \oplus H_{p}(B) \xrightarrow{j^{A}+i+H^{B}} H_{p}(x) \rightarrow \\
& \rightarrow H_{p-1}(A \cap B) \rightarrow \cdots
\end{aligned}
$$

There is also such a LES for reduced Rom.
THE MV SEQUENCE FOR (MV\#3)
THE RELATIVE CASE (Mather, 152)
let X be a space \& $A, B C X$.
Put $y=A \cup B$, viewed as a subspace of X. Assume $A, B C 7$ are open. Then \exists a LES:

$$
\begin{aligned}
& H_{p}(x, A \cap B) \rightarrow H_{p}(x, A) \oplus H_{p}(x, B) \rightarrow \\
& i_{x}^{(x, A) \oplus-i_{x}(x, B)}(x, B) \\
& j_{x}^{(j)} H_{p}(x A \cup B) \rightarrow H_{p-1}(x, A \cap B) \rightarrow
\end{aligned}
$$

We will prove, MU \#2. In order to do it we need the following results we already mentioned in the homological algebra section.

FIVE-LEMMA (\#2)
If $\alpha, \beta, \overline{,}, \varepsilon$ are isomorphisms in the diagram

$$
\begin{aligned}
& A \xrightarrow{i} B{ }^{j} C \xrightarrow{k} D^{l} \rightarrow E \\
& \downarrow^{\alpha} \psi^{\beta} \text { bor } \downarrow^{\prime} \downarrow^{\prime} \varepsilon \\
& A^{\prime} \xrightarrow[i]{i} B^{\prime} \rightarrow C^{\prime} \rightarrow D^{\prime} \rightarrow E^{\prime}
\end{aligned}
$$

and the rows are exact sepuences, then in is an isomorphism.
Proof
(1) r_{n} is subjective

Take $c^{\prime} \in C^{\prime}$. Then $k^{\prime}\left(c^{\prime}\right)=s(d)$ for some $d \in D$. By exactness

$$
0=l^{\prime}\left(k^{\prime}\left(c^{\prime}\right)\right)=l^{\prime}(s(d))=\varepsilon l(d)
$$

Since \mathcal{E} is an isomorphism, $l(d)=0$. So $d \in k e n l=\operatorname{lm} k$.

This means that $C \in C$ exists such that $k(c)=d$.
$m(c) \in C^{\prime}$. Also

$$
\begin{aligned}
k^{\prime}\left(\gamma^{n}(c)-c^{\prime}\right) & =k^{\prime} m(c)-k^{\prime}(c)= \\
& =S k(c)-S(d) \\
& =0
\end{aligned}
$$

$\Rightarrow m(c)-c^{\prime} \in$ Ken ${ }^{\prime}$. Since ken k ${ }^{\prime}=\operatorname{lm} j^{\prime}$,
b^{\prime} exists such that

$$
j^{\prime}\left(b^{\prime}\right)=m(c)-c^{\prime}
$$

$\partial b \in B$ with $\beta(b)=b^{\prime}$.

$$
\begin{aligned}
& m(c)-c^{\prime}-j^{\prime} \beta(b)=\gamma j(b) \\
& j n(c-j(b))=c^{\prime}
\end{aligned}
$$

(2) In is injective $j_{n}(c)=0$ implies that

$$
0=k^{\prime} m(c)=5 k(c)
$$

Since S is an isomorphism, $k(c)=0$.
so $c \in k e r k=\ln y$ and $b \in B$ exists such that

$$
\begin{aligned}
& \text { hat } j(b)=c \\
& 0=j n j(b) j^{\prime} \beta(b) \quad \Rightarrow \beta(b) \in k e j j=\mid m i^{\prime},
\end{aligned}
$$

So $a^{\prime} \in A^{\prime}$ exists such that $i^{\prime}\left(a^{\prime}\right)=\beta(b)$.
Since α is an isomorphism $a \in A$ exists sit. $\alpha(a)=a^{\prime}$, Then

$$
\beta(b)=i^{\prime} \alpha(a)=\beta i(a)
$$

Since β is an isomorphism,

$$
\begin{array}{r}
b=i(a) \\
c=j(b)=j i(a)=0
\end{array}
$$

ADDENDUM to theorem SES \Rightarrow LES
Let $0 \rightarrow A, \stackrel{i}{\rightarrow} B_{0} \xrightarrow{j} E_{0} \rightarrow 0$
be two SES of chain complexes
and f, g, h chain maps s.t. The diagram above commutes. Then we obtain two LES in homology with maps between them that makes all the squares commutative

$$
\begin{aligned}
& \xrightarrow{\partial_{*}} H_{p}\left(A_{0}\right) \xrightarrow{l_{*}} H_{p}\left(B_{.}\right) \xrightarrow{j_{*}} H_{p}\left(\varphi_{0}\right) \xrightarrow{\partial_{*}} H_{p-1}\left(c t_{0}\right) \rightarrow . \\
& \xrightarrow[\rightarrow]{\partial_{*}} H_{p}\left(A_{0}^{\prime}\right) \xrightarrow{l_{*}^{\prime \prime}} \operatorname{H}_{p}\left(B_{0}\right) \xrightarrow{g_{*}} \xrightarrow{j^{\prime} *} H_{p}\left(\varphi_{0}^{\prime}\right) \xrightarrow{\partial_{*}} H_{p-1}\left(\mathcal{C}_{t}^{\prime} .\right) \rightarrow
\end{aligned}
$$

Proof of $M V, \# 2$
$U^{3} \pm A \quad V^{3} B B$ \& UVVmAB a strong deformation retract

We can observe

$$
\begin{aligned}
& 0 \rightarrow C_{n}(A \cap B) \rightarrow C_{n}(A) \oplus C_{n}(B) \rightarrow C_{n}(A+B) \rightarrow 0 \\
& 0 \rightarrow C_{n}(U \cap V) \rightarrow C_{n}(U) \oplus C_{n}(V) \rightarrow C_{n}(U+V) \rightarrow 0
\end{aligned}
$$

these two SES sequences indrici the following commutative diagram (addendum)

By the 5 -lemma $H_{p+1}(A+B)=H_{p}\left\{0, y_{(}(x)\right.$ $\cong \operatorname{Hp+1}(x)$.

